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I N F L U E N C E  OF T H E  HALL E F F E C T  ON P L A S M A  C O M P R E S S I B I L I T Y  

IN A S T R O N G  T O R O I D A L  M A G N E T I C  FIELD 

V. P. Zhukov and G. Fuchs I UDC 533.951 

The development of  the tearing instability is studied in the presence of a high toroidal magnetic 
field and a high plasma conductivity. The variation of the plasma density is shown to be 
significant in this case. 

We study some aspects of the influence of the Hall effect on reconnection processes in a cylindrical 
(helical) geometry in the approximation of a strong magnetic field directed along the cylinder's axis. The 
interest in this problem is associated with problems that arise in the description of sawtooth oscillations in 
tokamaks. It is known that, giving, in principle, the true pattern of these oscillations, Kadomtsev's simple two- 
dimensional model [1, 2] conflicts with experimental results [3, 4]: the reconnection time turns out to be smaller 
than the predicted one [1, 2], and the complete reconnection is not observed in some experiments. Numerical 
modeling of three-dimensional problems in the approximation of single-fluid magnetic hydrodynamics [5, 6] 
yields results which are close to those in [1, 2]. 

Attempts have recently been made to explain the discrepancies between theory [1, 2] and experiment 
by the influence of the Hall effect [7-12]. The effect of the electron pressure gradient in the Ohm's generalized 
law was examined in [7, 8]. The expansion of the initial equations in the parameter R << 1, which is equal to 
the ratio of the large-to-small radius of a tokamak, was used in [7-12]. The density variation was assumed to 
be zero or small. 

In the present paper, we show that the formal expansion of the MHD equations in the parameter R 
allows one to derive equations according to which 

(1) the density variation is small (of the order of R-l) ;  
(2) in contrast to [7, 8], the term containing the electron pressure in the Ohm's generalized law 

disappears. This is natural because the presence of the pressure and density gradients is necessary for this 
term to exert an effect on the current; 

(3) a complete pressure-containing term appears in the simplified equation for the vector potential, 
and this term has no concern with Vp~ in the Ohm's generalized law and magnetic-field freezing into the 
electron plasma component. 

However, estimates and numerical simulation results show that, according to these equations, the 
density variation is insignificant if the parameter aR-a/2u  -1/2 is small (or is the Hall coemcient equal to the 
ratio of the ion dispersion dimension c/~pi to the small tokamak radius, and v is the coefficient of magnetic 
viscosity). For most tokamaks, the parameter etR-3/2t/-1/2 is large. Therefore, the density variation can be 
marked, and the formal expansion turns out to be not applicable because of the existence of thin current 
layers. 

Here we give a system of equations in which expansion in the parameter R is used, but the variation in 
density is not assumed to be small. Therefore, the expansion in the parameter R has no significant advantages 
for numerical analysis compared with the solution of the initial equations. 
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Init ial  Equat ions .  We use the magnetohydrodynamic equations which incorporate the Hall effect as 
the initial equations [13, 14]�9 We ignore the electron inertia, which has no importance for the effect in which 
we are interested. In the common notation, the system is of the form 

) 0, p -0S-+(VV)V =-V(p,+p~)+jxH, ~-+div(pV)=0, j=VxH, 

E = - V e  x H + v j - a p - l V p e ,  V e = V - a p - l j ,  OH = - V x E .  
Ot 

In the cylindrical coordinate system (r, ~o, z), in the case of helical symmetry O/Oz = -R-lO/Ocp these 
equations take the form 

(OVg (vv)vg) div(HH,); p \ - ~ -  + = 

(OVr V~2r) O(pe+pi) + (1 _t_ .~.2)-1 ( P k-&- + ( v v ) v ,  - = or 

OHz 
Ot 

OHm~2 OAo" ~ 
0-----~- + J9 -ff~'r ] ; 

p(-O-~E~ + (vv)v~ + v~v~) = 10(pr +p,) 
r r 0~o 

r 2 ,~-1 OH~/2 . 10A 9 r div (HHo)~ ;]  +(1+~ - ]  ( 1 +3"qr + 

Op 
~-~ + div (pV) = O; 

OAg 
Ot + (VeV)Ag = -vjg; 

+ div (VeHz) = div (HVez) + vA,Hz - a d i v ( p - l ( e  x V)p,), 

OA~ 1 OAg 
V , = V - a p - l j ,  H , = -  0--7' H ~ = - ~ ,  j ~ = - - -  r Oqo 

j, ~ OH~ 
r 0~o jg = - A s A g  + 2 H,  

e = (0, 0 ,1) ;  

o ~  
Or ' 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

Here fs and fg are the quantities related to the components of the vector f as follows: 

fs=f~o-~fz, f,=fz+~f~; As= 1+~--~ r-~O~o - ' ~ ' + - r ~ r  ~r  

div ( f ) =  1 Or/, 10fs  Og 09 
r 0 - 7  + r 0~o ; (fV)o = fr ~r  + f" 0"~; 

Ag is the g component of the vector potential, H,  and Hg are the z and g components of the magnetic field, 
and Ve is the electron velocity. System (1)-(7) is given in dimensionless variables [13]. The characteristic 
transverse plasma dimension a (the small radius of a tokamak) is used as the scale of length, the Alfvdn 
velocity calculated over a toroidal magnetic field: VA = Hz/4V/~ > as the scale of velocity, a/VA as the scale 
of time, and Hz as the scale of the magnetic field. 

Equations (i)-(7) should be supplemented by the equations for an electron Pe and an ion pi pressure, 
whose concrete forms will be given below. 

Ini t ia l  and  B o u n d a r y  Condit ions.  As the initial conditions, we use the following ones: 

�9 r ( 1 - - ( 1 - r 2 ) '  +1 ) 
= = = - I (8) p 1, H = = l ,  Vz O, H, O, Hs=-~  qr 2 �9 

Therefore, we have a situation with a neutral layer. We have H, > 0 near the coordinate axis and 
Hs < 0 for large radii. The position of the neutral surface (Hs = O) depends on the quantity q. 
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The plasma pressure at the initial moment of t ime is assumed to be such that  the plasma equilibrium 
in a magnetic field is ensured. The equilibrium is broken by a small velocity perturbation whose concrete form 
plays no part. 

The problem was solved in the domain 0 ~< r ~< 1, 0 ~< ~ ~< 27r. The boundary r = 1 is assumed to be 
a conducting surface: 

OH, 10pe  
HT = 0 (Ag = const), V~ = O, Pe,i = const, E~, = VerHz - V~,Hr - v Or pr 09 = O. 

A p p r o x i m a t i o n  of  L a r g e  R.  We simplify the formulated problem assuming that  R -1 << 1, similarly 
to [1, 2], but, in contrast to [1, 2], the density variation is not assumed to be small. Here we have the following 
scale of the quantities: 

0 
O(1):  Hz,p, V l_, O(R-Z) :  Ag, Vr, V~,-~, O ( R - 2 ) :  Hz- l ,pe , i , j r , j z ,  Vz. 

In the first approximation, we obtain the Kadomtsev model: 

(0v ) 
p - ~ + ( V V ) V  = - V ( p e + p i + H g ) + j g V A , ,  

OAg Op (9) 
Ot + ( V V ) A g = - v j g ,  d i v V = 0 ,  ~ - / + d i v ( p V ) = 0 .  

If p = 1 + O(R -1) at the initial moment of time, the deviation of p from unity will be of the order of 
O(R -z) in the subsequent moments  as well. Hence, for the vorticity w = (e rot V),  we write the equation 

&o 
0-7 + (VV)~ = div (Hjg). (10) 

The second approximation makes it possible to take into account the effects of interest. It has the form 

C ) p -~-  + ( V V ) V  = - V ( p ,  + Pi + Hg) + jgVAg; (11) 

OAg 2 
Ot + (V,V)Ag = -r ig ,  jg = ~ - AAg; (12) 

d i v V  = - a d i v  (p - l{e  x V(pe + Hg) + Hjg}); (13) 

0--e-P + div (pV) = 0; (14) 
0t 

H=-exVAg, j = - e x V H g ,  V ~ = V - a p - ] j .  (15) 

Here, by V,  H,  and j,  we mean their transverse (r and s) components, and A is the Laplace standard operator. 
We note that  Vz = 0 in this approximation. For a = 0, the model (11)-(15) becomes the Kadomtsev model. 

We shall est imate how the density varies according to Eqs. (11)-(15). It follows from (13) that  

V = V0 - a p - ' ( e  x V(pe + gg)  + Hjg),  (16) 

where V0 is the vector whose divergence is zero. The quantity V0 can be found from a joint solution of Eqs. 
(11) and (13). 

Substituting (16) into (14), we obtain 

Op 
0-~ + (V0V)p = a d i v  (H/a). (17) 

Representing p in the form p = l + a p , ,  for P* we have the same equation as that  for vorticity in the Kadomtsev 
model (10). Thus, if the coefficie/at a is sufficiently small, the formula p ~ 1 + aw holds. Since w ,-, R -1, 
the formal variation in density is small. However, as is known, the current at small v is accompanied by the 
formation of a current layer of width of the order of v z/2. The plasma flows into this layer with a velocity 
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of the order of v 1/2 and flows out along this layer with a velocity approximately equal to the Alfv~n one 
calculated for a poloidal magnetic field [1, 2]. Thus, the vorticity is w --. v -i/2. 

It is easy to see that the Kadomtsev model possesses the following property. If V( t , r )  and Ao(t, r) 
are the solutions of (9) and (10) for R = R., v = v., and the initial data (8), the functions R . V ( R , t , r )  
and R.Ag(R . t , r )  will be the solutions of these equations for R = 1 and v = v ,R. .  Therefore, we have the 
scaling w ... R-S/2v -z/2 for w. Correspondingly, the density variation will be of the order of 2aR-S/2v -z/2. 
This quantity is very large for real tokamaks. For example, for the typical parameters of a TEXTOR facility 
(a ~ 0.05 and R ~ 3.8, and the Coulomb value v -~ 10 -s)  it is equal to 60. 

A p p r o x i m a t i o n  of  Smal l  D e n s i t y  Var ia t ion .  We shall clarify at which parameters the density 
variation is significant. To do this, we assume that the value of a is sufficiently small and, therefore, p - 1  -.. R -1 
and d ivV .-, R -2. In essence, this will be the formal expansion of Eqs. (1)-(7) with initial parameters (8) in 
the parameter R. 

Equation (13) in this case takes the form 

div V = - a  div (Hjg). (18) 

Thus, the effects associated with the electron pressure gradient in the Ohm's law coincide. We recall 
that (13) is derived from Eq. (6) containing Vp,. 

With allowance for (18), with an accuracy required with respect to R -z,  from (11) we obtain [w = 
(e rotV)] 

0__~_~ - - ,  0t + (VV)w = (1 + aw) div Hjg _ div rot (Pc)  
P P (19) 

V = - ( e  x Vr - aHja , Ar = - w  + adiv( jqVAa).  

The quantity P = pe + Pi + Hg can be calculated with sufficient accuracy, using the divergence of (11) 
and setting p = 1 and div V = 0: 

OVk OVz 
A P  = div(jgVAg) Oxi Oxk" (20) 

For density, we write 

Oq--~-P -- (e • V~b~)Vp = ad iv (Hjg ) .  
0t 

For the expression (V,V)A~ in (12), with allowance for (15) and the fact that  (HV)Ag 

(VeV)Ag = ( - ( e  x Vr - crp-lj)VAg 

( - ( e  x Vr + cr(e x VHg))VAg = - ( e  x V{r - crP + or(p, + pi)})VAg. 

For the function ~b~ = r - crP, it follows from (19) and (20) that 

OVk 
A r  = - w  + a - -  

Oz~ Ozk" 

Thus, for Ag we have 

(21) 

= O, we have 

(22) 

aAg (e • VCa + ae • V(pe + pi))VAg = - v j  9. (23) 
at 

We emphasize that  the complete pressure-containing term in (23) is by no means associated with pc 
in the Ohm's generalized law. It appears owing to the freezing of a magnetic field into the electron plasma 
component, i.e., owing to the expression ap- l j  x H in the Ohm's generalized law. The appearance of this 
term is caused by the fact that  the approximation of a large toroidal field allows one to express the poloidal 
current through the plasma pressure. 

For simplicity, we assume that, owing to the large thermal diffusivity along the magnetic field, the 
temperatures Te and Ti are constant along the field, i.e., Te,i = Te,i(Ag, t). For tokamaks, Te along the field 
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Fig. 1 Fig. 2 

is constant with high accuracy. For ions, this is not, generally speaking, the case, although the ion thermal 
diffusivity along the magnetic field is large. The term (e x Vpi,e)VAg = Ti,~(e x V p ) V A g + p ( e  x VTi,e)VAg = 
Ti,e(e x Vp)VAg ~ R -4 in (23), and it may be ignored. We emphasize that a correct taking into account of 
Vp requires an account of Vp in Eq. (13) as well. This means that, in this case, it is possible to use system 
(11)-(15), and the equation for Ag turns out to be not simple (see the Appendix). 

As a result, we derive the closed system (19)-(23), which does not call for knowledge of a concrete 
temperature distribution. 

Equations (19)-(23) have the following property: if p(t, r), V(L r), and A~(t, r) are the solutions of 
(19)-(23) for R = R. ,  a = a . ,  v = v., and the initial data (8), the functions p(R , t , r ) ,  R . V ( R . t , r ) ,  and 
R.A~(R.t , r )  will be the solutions of these equations for R = 1, a = a . / R . ,  and v -- v .R, ,  which allows us 
to confine ourselves to a s tudy of the case R = 1. 

System (19)-(23) was solved numerically. Computations show that the formula p ~ 1 -i- aw holds with 
high accuracy for not too large a. The quantity w grows in the process of reconnection, and it reaches a 
maximum at the moment of complete reconnection and then decreases to zero. Figure 1 illustrates the typical 
distribution of w. The picture of the magnetic lines of force closed on themselves is depicted in Fig. 2. The 
asymmetry in the distribution of w is associated with the presence of the Hall terms: the  asymmetry is the 
more significant the larger the coefficient a.  

On the whole, the reconnection pattern for a ~ 0 differs little from the Kadomtsev model, since 
we use small values of a for the applicability of system (19)-(23). These computations, however, make it 
possible to get an idea of the density variation depending on v and a. We shall give estimates for a TEXTOR 
tokamak. For this facility, we have a = 0.05, R = 3.8, and v = 10 -8. Computations show that  already for 
v = 2.5.10 -8 >> 10 -8, the maximum difference in time and space of p from unity reaches 20%. The value 
of w and, hence, the difference of p from unity grows with increasing v. Thus, the role of the effects that we 
have discussed for the parameters of a real facility can only become more significant. 

A P P E N D I X  

We have shown that,  for the plasma parameters that are typical of tolmmaks, the density variation in 
developing the tearing mode can be large. The region of the most pronounced variation is concentrated in a 
close vicinity of the neutral layer. Therefore, the density gradients are large, which can significantly change 
the flow pattern. A correct allowance for Vp assumes the use of Eqs. (11)-(15). 

We shall show the form of the equation for the vector potential of system (11)-(15). We introduce the 
vorticity w = (erot V) and the function r V0 = - ( e  x Vr  [see (16)]. For r we have 

A r  = - w  + ad iv  jgVAg - V(pe + Hg) (24) 
P 
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Using the divergence of (11), we obtain 

div jgVAg - V(pe + Hg) = div Vpi d OV~ OVi + divV + - -  . (25) 
p p ~ Ozt Ozk 

Here d/dt = 0/0t + (VV). Since divV = -p-l(dp/dt), we have d(divV)/dt = -d2(ln p)/dt 2. Substituting 
the latter into the expression (VeV)Ag = (V + ap-](e x VHg))VAt,  with allowance for (HV)Ag = 0 and 
(16), (24), and (25), we write 

where 

OAg 
0t + (V,V)Ag = -v jg  , 

V a = ( e  x V A - l w ) -  a p - l ( e  x V p e ) - o ~ ( e x  VA-1 (div - a ( e x  VA-I  (-~/Oxlr dl 2 

and A -1 is the Laplace inverse operator. Clearly, taking into account the density gradient is not simple. 
We note that the differences of a real toroidal geometry from the spiral one that we have used 

are manifested also in the second-order expansion in the parameter R. Factors such as electron inertia 
[10], longitudinal electron viscosity [12], etc. can affect the character of sawtooth oscillations. However, the 
conclusion that a significant density variation in the development of the kink-tearing instability in tokamaks' 
plasma is possible is valid in these cases as well. This conclusion follows from the fact that div V turns out to 
be of the order of crHVj=. In the case of high conductivity, the value of jz is large and, therefore, the plasma 
cannot be considered incompressible. The expression for div V can be derived from the equation for Hz (this 
is not obligatorily the case of a helical geometry) under the assumption of the smallness of OHz/Ot compared 
with the other terms of this equation. This is true if the characteristic time of the process is much longer than 
the Alfv~n time a/VA, which corresponds to reality. The assumption R -1 << 1 is not obligatory. 
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